Development of Zinc and Copper- carboxylate metal-organic frameworks (MOFs) as potential drug Carriers
Adedibu C. Tella1*, Felicia E. Williams2, Olalere G. Adeyemi3, Lukman O. Alimi4 and Sunday J. Olatunji1.

Department of Chemistry, University of Ilorin, P.M.B 1515, Ilorin Nigeria1. Department of Clinical Pharmacy and Pharmacy Practice, University of Ilorin, P.M.B 1515, Ilorin Nigeria2Department of Chemical Sciences, Redeemer’s University, Ede, Nigeria3. Department of Chemistry and Polymer Science, Stellenbosch University, 7602, Stellenbosch, Western Cape, South Africa4
*Correspondence Author:   ac_tella@yahoo.co.uk; +2348035019197

 

ABSTRACT

Introduction:  Metal-organic frameworks (MOFs) are promising drug nano-vehicles due to their biocompatibility and high porosity. This study explored the feasibility of synthesizing Copper-isonicotinate and Zinc-fumarate mechanochemically and utilizing the compounds for the loading of Ibuprofen and Urea respectively.

Methods: Zinc-fumarate [Zn(fum)(H2O)2] and Copper-isonicotinate [Cu(INA)2].H2O] metal-organic frameworks (MOFs) were synthesized by solvent-free mechanochemical technique. These compounds were characterized using elemental analysis; UV-Vis and Fourier transform infrared (FT-IR) Spectroscopies and X-ray powder diffraction (XRPD). The MOFs were investigated for the loading of Ibuprofen and Urea respectively based on their porosities for better drug interaction and high loading using UV-VIS spectroscopy.

Results: The synthesized Zinc-fumarate [Zn(fum)(H2O)2] exhibited a very high drug loading capacities of 98 ± 1.45 wt% of Ibuprofen while the synthesized Copper-isonicotinate [Cu(INA)2].H2O] exhibited a slightly high drug loading capacities of 44 ±  0.95 wt% of Urea.

 Conclusion: Zinc-fumarate and Copper-isonicotinate MOFs are potential candidates for drug loading.

Keywords: Metal-organic frameworks, Loading, Solvent-free, Drugs, X-ray powder diffraction

TO DOWNLOAD THE FULL TEXT: CLICK HERE

REFERENCES

  1. Nagy ZK, Balogh A, Vajna B, Farkas A, Patyi G, Kramarics A, et al. (2012). Comparison of electrospun and extruded Soluplus®-based solid dosage forms of improved dissolution. Pharm. Sci. 101 (1): 322 – 332.
  1. Huxford RC, Rocca JD, Lin W. (2010). Metal-Organic Frameworks as Potential Drug Carriers. Curr. Opin. Chem. Biol. 14 (2): 262 – 268.
  1. Cohen SM. (2007). New approaches for medicinal applications of bioinorganic chemistry. Opin. Chem. Biol. 11 (2): 115 – 120.
  1. Janiak C. (2003). Engineering coordination polymers towards applications. Dalton Transactions. 2781–2804.
  1. Yaghi OM, O’Keeffe M, Ockwig NW, Chae HK, Eddaoudi M, Kim J. (2003). Reticular Synthesis and the Design of New Materials. Nature. 423: 705-714.
  1. Murray LJ, Dinca M, Long JR. (2009). Hydrogen Storage in Metal Organic Frameworks. Chem. Soc. Rev. 38: 1294 – 1314.
  1. Morris RE, Wheatley PS. (2008). Gas storage in nanoporous materials. Angew. Chem. Int. Ed. 47(27): 4966 – 4981.
  1. Li JR, Kuppler RJ, Zhou HC. (2009). Selective gas adsorption and separation in metal organic frameworks. Chem. Soc. Rev. 38: 1477 – 1504.
  1. Meilikhov M, Yusenko K, Esken D, Turner S, Van Tendeloo G, Fischer RA. (2010). Metals@MOFs – loading MOFs with Metal Nanoparticles for Hybrid Functions. J. Inorg. Chem. 2010 (24): 3701 – 3714.
  1. Müller M, Hermes S, Kähler K, Van den Berg MWE, Muhler M, Fischer RA. (2008). Loading of MOF-5 with Cu and ZnO Nanoparticles by Gas-Phase Infiltration with Organometallic Precursors: Properties of Cu/Zno@MOF – 5 as catalyst for methanol synthesis. Chem. Mater. 20 (14): 4576 -4587.
  1. Müller M, Zhang X, Wang Y, Fischer RA. (2009). Nanometer-sized titania hosted MOF-5. Chem. Commun. 1: 119 – 121.
  1. Lee J, Farha OK, Roberts J, Scheidt KA, Nguyen ST, Hupp JT. (2009). Metal Organic Framework Materials as Catalysts. Chem. Soc. Rev. 38:1450 – 1459.
  1. Ma L, Abney C, Lin W. (2009). Enantioselective catalysis with homochiral metal organic frameworks. Chem. Soc. Rev. 38: 1248.
  1. Horcajada P, Chalati T, Serre C, Gillet B, Sebrie C, Baati T, et al. (2010). Porous Metal-Organic-Framework Nanoscale Carriers as a Potential Platform for Drug Delivery and Imaging. Nat Mater. 9: 172 – 178.
  1. McKinlay AC, Morris RE, Horcajada P, G. Férey G, R. Gref R, P. Couvreur P, et al (2010). Metal-organic frameworks for biological and medical applications. Angew. Chem. Int. Ed., 49 (36):  6260 – 6266.
  1. Horcajada P, Serre C, Vallet-Regi M, Sebban M, Taulelle F, Ferey G. (2006). Metal-Organic Frameworks as Efficient Materials for Drug Delivery. Angew. Chem. Int. Ed., 45 (36): 5974 -5978.
  1. Horcajada P, Serre C, Maurin G, Ramsahye NA, Balas F, Vallet-Regi M, et al. (2008). Flexible porous metal-organic frameworks for a controlled drug delivery. Am. Chem. Soc., 130 (21): 6774 – 6780.
  1. Huxford RC, Della JR, Lin W. (2010). Metal-Organic Frameworks as Potential Drug Carriers. Curr. Opin. Chem. Biol., 14 (2): 262 – 268.
  1. Vyasmudri SY, Maji TK. (2009). Sixfold interpenetrated diamondoid network of Cu(I): Synthesis, structure, selective anion exchange and luminescence properties. Phys. Lett. 473 (4-6): 312 – 316.
  1. Maji TK, Matsuda R, Kitagawa SA. (2007). Flexible interpenetrating coordination framework with a bimodal porous functionality. Mater. 6: 142 – 148
  1. Guo Z, Cao R, Wang X, Li H, Yuan W, Wang G, et al. (2009). A Multifunctional 3D Ferroelectric and NLO-Active Porous Metal−Organic Framework. Am. Chem. Soc. 131 (20): 6894.
  1. Klimakow M, Klobes P, Rademann K, Emmerling F. (2012). Characterization of mechanochemically synthesized MOFs. Microporous Mesoporous mater. 154: 113-118.
  1. Pichon A, James SL. (2008). An array-based study of reactivity under solvent-free mechanochemical conditions—insights and trends. CrystEngComm. 10: 1839 – 1847.
  1. Biradha K, Ramanan A, Vittal JJ. (2009). Coordination Polymers versus Metal Organic Frameworks. Cryst. Growth Des. 9 (7): 2969 – 2970.
  1. Yaghi OM, Li G, Li H. (1995). Selective binding and removal of guests in a microporous metal–organic framework.  Nature 378:703-706.
  1. Kitagawa S, Kitaura R, Noro S. (2004). Functional Porous Coordination Polymers. Chem. Int. Ed. 43 (18): 2334 – 2375.
  1. Pachfule P, Balan BK, Kurungot S, Banerjee R. (2012) One-dimensional confinement of a nanosized metal organic framework in carbon nanofibers for improved gas adsorption. Commun. 48: 2009 – 2011.
  1. Dalai S, Mukherjee PS, Zangrando E, Lloret F, Chaudhuri NR. (2002). A novel class of interpenetrated 3-D network of a dimeric cupric-tetracarboxylate unit. Chem. Soc. Dalton Trans. 6: 822 – 823.
  1. Pochodylo AL, LaDuca RL, (2010). Substituent Dependent Dimensionality in Luminescent Zinc Isophthalate Coordination Polymers Containing Bis(3-pyridylmethyl)piperazine. Anorg. Allg. Chem. 636 (15): 2568 – 2573.
  1. Martin DP, Montney MR, Supkowski RM, LaDuca RL, (2008). Cadmium Glutarate Coordination Polymers Containing Hydrogen-Bonding Capable Tethering Organodiimines: From Double Interpenetration to Supramolecular Cavities Containing an Unprecedented Water Tape Morphology. Growth Des. 8 (8) 3091- 3097.
  1. Mukherjee PS, Konar S, Zangrando E, Mallah T, Ribas J, Chaudhuri NR. (2003) Structural Analyses and Magnetic Properties of 3D Coordination Polymeric Networks of Nickel(II) Maleate and Manganese(II) Adipate with the Flexible 1,2-Bis(4-pyridyl)ethane Ligand. Chem. 42 (8): 2695 – 2703
  1. Tella AC, Owalude SO,  Nzikahyel  S,  Arise RO,(2015) Solid-state synthesis  of isostructural tetrachlorometallate salts of  amodiaquine : Crystal structure of [CdCl4][C20H24ClN3O].Med.Chem. Res. 24:3949 – 3957
  1. Tella AC, Owalude SO, Ojekanmi AC, Oluwafemi OS. (2014). Synthesis of copper–isonicotinate metal–organic frameworks simply by mixing solid reactants and investigation of their adsorptive properties for the removal of the fluorescein dye. New J. Chem. 38: 4494 – 4500
  1. Rodrigues MO, de Paula MV, Wanderley KA, Vasconcelos LB, Alves Jr , Soares TA. (2012). Metal Organic Frameworks for Drug Delivery and Environmental Remediation: A Molecular Docking Approach. Int. J. Quant. Chem. 112 (20):  3346-3355.
  1. Pichon A, Lauzuen-Garey A, James SL, (2006). Solvent free synthesis of a microporous metal organic frameworks. CrystEngComm. 8: 211 – 214.
  1. Lim S, Suh K, Kim KY, Yoon M, Park H, Dybtsev DN, Kim K. (2012). Porous carbon materials with a controllable surface area synthesized from metal–organic frameworks. Commun. 48 (60): 7447-7449.
  1. Keskin S, Seda K (2011). Biomedical Application of Metal Organic Frameworks. Ind. Eng. Chem. Res 50 (4): 1799-1812.
Close Menu